本文由第三方AI基于17173文章http://news.17173.com/content/09182025/220308070.shtml提炼总结而成,可能与原文真实意图存在偏差。不代表网站观点和立场。推荐点击链接阅读原文细致比对和校验。
DeepSeek-R1 论文登上《自然》封面,通讯作者为梁文锋
2025-09-18 22:03:08
神评论
17173 新闻导语
DeepSeek-R1论文登上《自然》封面,梁文锋通讯作者,揭示全球首个同行评审大语言模型创新强化学习框架,提升AI推理能力。
由 DeepSeek 团队共同完成、梁文锋担任通讯作者的 DeepSeek-R1 推理模型研究论文,登上了国际权威期刊《自然(Nature)》第 645 期的封面。与今年 1 月发布的 DeepSeek-R1 的初版论文相比,本次论文披露了更多模型训练的细节。
据悉,DeepSeek-R1 也是全球首个经过同行评审的主流大语言模型。Nature 评价道:目前几乎所有主流的大模型都还没有经过独立同行评审,这一空白“终于被 DeepSeek 打破”。
论文摘要显示,通用推理一直是人工智能(AI)领域一项长期且艰巨的挑战。近年来,以大型语言模型(LLMs)、和思维链(CoT)提示为代表的技术突破,已在基础推理任务上取得了显著成功。然而,这种成功在很大程度上依赖于大量人工标注的演示数据,且模型在处理更复杂问题时的能力仍显不足。
研究表明,大型语言模型的推理能力可通过纯强化学习(RL)来激发,无需依赖人工标注的推理轨迹。所提出的强化学习框架能够促进高级推理模式的自主形成,例如自我反思、验证和动态策略调整。
因此,经训练的模型在数学、编程竞赛和 STEM(科学、技术、工程、数学)领域等可验证任务上展现出更优异的性能,优于通过传统监督学习(基于人工演示数据)训练的同类模型。此外,这些大规模模型所呈现的自主形成的推理模式,可被系统性地用于指导和提升小型模型的推理能力。
【来源:IT之家】

